Applications of AI in Clinical Trials

Ryan W Stidham, MD, MS Inflammatory Bowel Disease Program Department of Medicine, Division of Gastroenterology Department of Computational Medicine and Bioinformatics University of Michigan

2022 Innovation Conference: The Future of AI in GI September 9 - 10, 2022

> American Gastroenterological Association

Financial Disclosures

<u>Industry Support for Investigator-Initiated Studies</u> Janssen, Abbvie, Bristol Myers Squibb

Consultancy or Advisory Board Membership

Abbvie, CorEvitas, Eli Lilly, Exact Sciences, Gilead, Evergreen Pharmaceuticals, Janssen, Takeda

Intellectual Property

Automated Assessment of Bowel Damage in Intestinal Diseases (US Pat. #10918326) Automated Characterization of Disease Features in Endoscopic Videos (US PatPend # 62-848,724) Technology Licenses from the University of Michigan to AMI, llc; EIQ, llc; PreNovo, llc

Conventional GI Clinical Trials

Candidate Identification Subject Screening Endpoint Measurement Real World Experience (RWE)

Many Pain Points

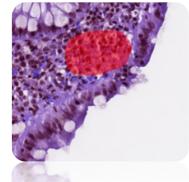
Al in Clinical Trials I: Automating Endpoint Scoring

Trials, Regulators, and Clinical Practice Relies on Expert Interpretation of Imaging for Disease Classification, Prognosis and Therapeutic Assessment

Endoscopy

IBD Endoscopic Scoring

- Mayo
- UCEIS
- SES-CD


Cross Sectional Imaging

Colorectal Cancer

- (CT) Progression Free Survival <u>Hepatocellular Cancer</u>
- (MRI & CT) LiRADs
- IBD Crohn's Disease
- (MRI) MaRIA Score

Histology

IBD – UC and CD

- RHI
- Geboes Score
- NAFLD
- Flip SAF
- NIH DAS

Eosinophilic Esophagitis

• Eos Counts

Neural Networks to Replicate Expert MES Classification in UC

Model Development

Training Set of Still Images

UC Patients 3,082 Patients (16,514 Images) 0:8951 1: 3584 2: 2278 3: 1701 **Test Set (10%)** 304 Patients 1,652 Images Training Set (90%) Unknown 2,778 Patients 14,862 Images Image **Mayo Score Probability** 0.001 0 1 0.014 e ||||| **CNN** 0.260 2 e |||||

[Insert Disease Classifier of Choice]

3

€ |||||

0.711

Adjudicated MES Scoring

Predictive Model

Great Success REPLICATING Expert UC Grading

Still Image UC Severity Classification

Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis

Tsuyoshi Ozawa, MD, PhD,^{1,2} Soichiro Ishihara, MD, PhD,^{1,2,4} Mitsuhiro Fujishiro, MD, PhD,⁵ Hiroaki Saito, MD,⁶ Youichi Kumagai, MD, PhD,⁵ Satoki Shichijo, MD, PhD,⁶ Kazuharu Aoyama, PhD,⁹ Tomohiro Tada, MD, PhD.^{14,5}

Ozawa et al. GIE 2019

Chark for

Network Open.

Original Investigation | Gastroenterology and Hepatology Performance of a Deep Learning Model vs Human Reviewers

in Grading Endoscopic Disease Severity of Patients With Ulcerative Colitis

Ryan W. Stidham, MD, MS: Wenshuo Liu, PhD; Shrinivas Bishu, MD; Michael D. Rice, MD; Peter D. R. Higgins, MD, PhD; Ji Zhu, PhD, MSc; Brahmajee K. Nallamothu, MD, MPH; Akbar K. Waljee, MD, MSc

Stidham et al. JAMA Net Open 2019

Development and Validation of a Deep Neural Network for Accurate Evaluation of Endoscopic Images From Patients With Ulcerative Colitis

Kento Takenaka,¹ Kazuo Ohtsuka,¹ Toshimitsu Fujii,¹ Mariko Negi,² Kohei Suzuki,¹ Hiromichi Shimizu,¹ Shiori Oshima,³ Shintaro Akiyama,¹ Maiko Motobayashi,¹ Masakazu Nagahori,¹ Eiko Saito,¹ Katsuyoshi Matsuoka,¹ and Mamoru Watanabe¹

Takenaka et al. Gastroenterology 2020

Full Motion Endoscopic Video Classification

NEW METHODS: Clinical Endoscopy

Fully automated endoscopic disease activity assessment in ulcerative colitis

Check for

Heming Yao, BS, ¹ Kayvan Najarian, PhD, ^{1,2,3,4,5} Jonathan Gryak, PhD, ^{1,5} Shrinivas Bishu, MD, ⁷ Michael D. Rice, MD, ⁷ Akbar K. Waljee, MD, MSc, ^{6,7,8,9} H. Jeffrey Wilkins, MD, ¹⁰ Ryan W. Stidham, MD, MS^{1,6,7}

Ann Arbor, Michigan; Plymouth Meeting, Pennsylvania, USA

Yao, Stidham, Najarian et al. GIE 2021

Gastroenterology 2021;160:710-719

CLINICAL—ALIMENTARY TRACT

Central Reading of Ulcerative Colitis Clinical Trial Videos Using Neural Networks

Klaus Gottlieb,^{1,*} James Requa,^{2,*} William Karnes,² Ranga Chandra Gudivada,¹ Jie Shen,¹ Efren Rael,² Vipin Arora,¹ Tyler Dao,² Andrew Ninh,² and James McGill¹

Gottlieb et al. Gastroenterology 2021

Value Proposition for Automated Endoscopic Scoring in Trials

RELIABILITY: Near perfect reproducibility and objectivity

• While incorporating bias and "imperfections" of experts, results are reproducible

EFFICENCY and **SPEED**:

- Avoid enrollment delays awaiting reviewer scoring
- Reduce time needed for clinical trials

LOWER COST: Less human labor

Expect reduced costs

UNIFORMITY: Same scoring instrument between trials

• Big Pharma + Small Pharma + Academia + Community Practice: Same Instrument

Automated Scoring for Trials: Challenges and Solutions

WHAT IS THE AI PERFORMANCE BENCHMARK?

- Matching human agreement is AI target
- Explainability > "Correctness"

HOW DO WE TRAIN ?

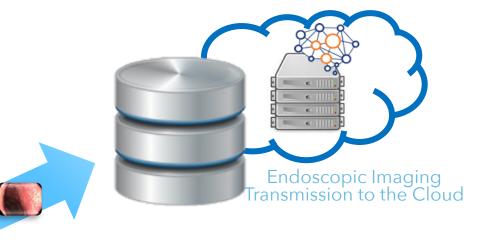
- More Reviewers ≠ More Accuracy
- Training should oversample under-represented
- VERY RIGEROUS EXPERT TRAINING AND EVAL

PROVE TRUE REPRODUCABILITY

• Need repeated colonoscopy same patient

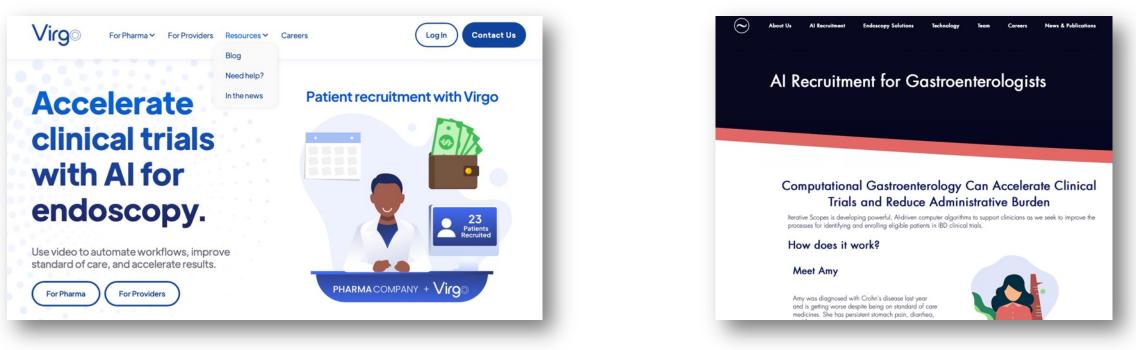
VENDOR INTEROPERABILITY

- Standardization of Minimum Quality Requirements
- Establish acceptable disagreement between AI Tools



	Rev				
Reviewer A Mayo Score, %	0	1	2	3	Rev B (n)
0	77.1	22.4	0.6	0.0	9160
1	14.6	54.7	30.3	0.4	3430
2	0.2	6.0	69.3	24.5	2405
3	0.0	0.1	14.3	85.7	1519
Rev A (<i>n</i>)	7563	4069	2976	1906	16514

AI in Trials II: Population-Level Automated Assessments


Multi-Site Video Digitization & Review

- Passive background video capture
- Automated endoscopic video analysis
- Detection of findings of interest
- Knowledge of WHO, WHEN, & WHERE disease occurs

Commercial Startups Aiming to Use AI Endoscopic Analysis and Video Collection to Help Accelerate Clinical Trials

Virgo SVS, LLC

Iterative Scopes, LLC

Addressing Pain Point of Identifying and Screening Viable Candidates for IBD Clinical Trials

Technologic Al Endoscopy Cloud Capabilities Within Academia

IBD-ACCESS

Automated Crohn's and Colitis Scoring System

	VideoID	Visit	MES_Prediction	conf_est	MES_0	MES_1	MES_2	MES_3	video_qual_score
	10206_20170515	Baseline	2	0.78	0.45	0	0.53	0.01	0.44
	10297_20180103	Baseline	1	0.44	0.63	0.34	0.03	0	0.65
	10995_20171227	Baseline	2	0.95	0.57	0.27	0.16	0	0.43
_	11135_20170322	Baseline	3	0.86	0.59	0.02	0.02	0.37	0.71
•	0171024	Baseline	2	0.71	0.77	0.14	0.07	0.02	0.65
-)171031	Baseline	3	0.88	0.52	0.15	0.02	0.31	0.81
	0161114	Baseline	3	0.61	0.02	0.23	0.33	0.41	0.69
)170529	Baseline	2	0.55	0.33	0.23	0.4	0.03	0.67
	0171212	Baseline	1	0.91	0.92	0.08	0.01	0	0.72
)171227	Baseline	1	0.83	0.83	0.15	0.01	0	0.61
	20170118	Baseline	2	0.58	0.57	0.28	0.14	0.01	0.75

Automated Passive/ Background Analysis of IBD Patients Undergoing Endoscopy

Brighton

East Ann Arbor

University Hospital

Northville

Value Proposition for Population-Level Endoscopic Al

VideolD	Visit	MES_Prediction	conf_est	MES_0	MES_1	MES_2	MES_3	video_qual_score
10206_20170515	Baseline	2	0.78	0.45	0	0.53	0.01	0.44
10297_20180103	Baseline	1	0.44	0.63	0.34	0.03	0	0.65
10995_20171227	Baseline	2	0.95	0.57	0.27	0.16	0	0.43
11135_20170322	Baseline	3	0.86	0.59	0.02	0.02	0.37	0.71
11367_20171024	Baseline	2	0.71	0.77	0.14	0.07	0.02	0.65
12419_20171031	Baseline	3	0.88	0.52	0.15	0.02	0.31	0.81
12561_20161114	Baseline	3	0.61	0.02	0.23	0.33	0.41	0.69
12826_20170529	Baseline	2	0.55	0.33	0.23	0.4	0.03	0.67
13398_20171212	Baseline	1	0.91	0.92	0.08	0.01	0	0.72
13913_20171227	Baseline	1	0.83	0.83	0.15	0.01	0	0.61
14988 20170118	Baseline	2	0.58	0.57	0.28	0.14	0.01	0.75

- SPEED:
- EFFICENCY:
- UNDERSERVED:

Rapidly Identify ELIGIBLE Clinical Trial Candidates Avoid Need to Repeat Colonoscopy for Trial Identify Patients Distant from Tertiary Care Centers Who Typically Do Not Have ACCESS to Trials

- Phase IV SURVEILLANCE:
- POPULATION HEALTH:
- Post-Marketing Real-World Drug Monitoring Feasible. Manage Large Populations & Monitor Quality

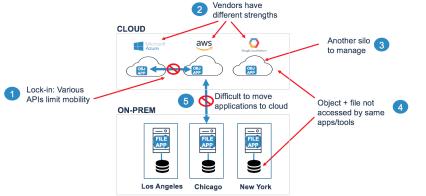
Al Population Screening for Trials: Challenges and Solutions

EXPENSIVE

- Requires new hardware Who Pays?
- Service vs. Local Hardware / PACS Purchase Models

GDPR, Privacy and Data Ownership Considerations

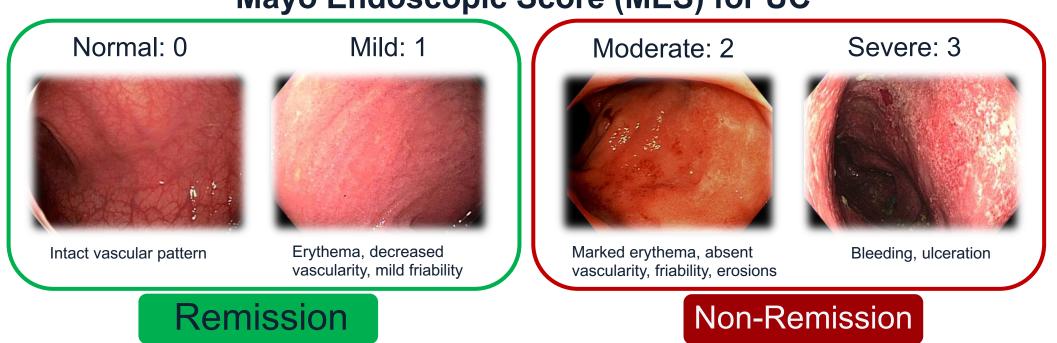
- Expect US to Eventually Resemble EU
- 21st Century Consent Process
- Transparency, Proactive Trust, Ethical Behavior


Data SECURITY

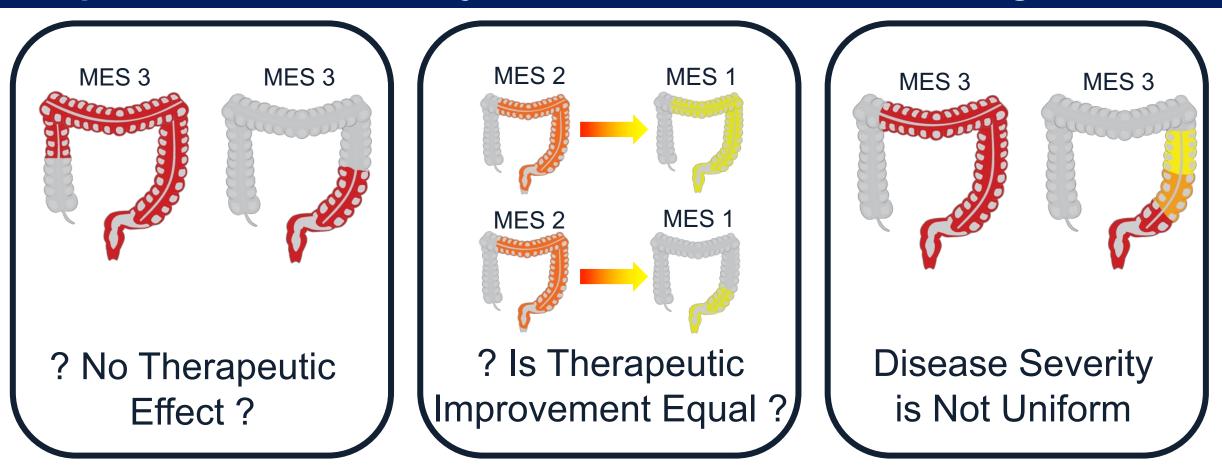
- Multi-cloud vs. On-Prem Storage and Compute
- Chain of Custody / Chain of Use

VENDOR INTEROPERABILITY

- Standardization of Interchange Languages
- Standardization of Minimum Quality Requirements

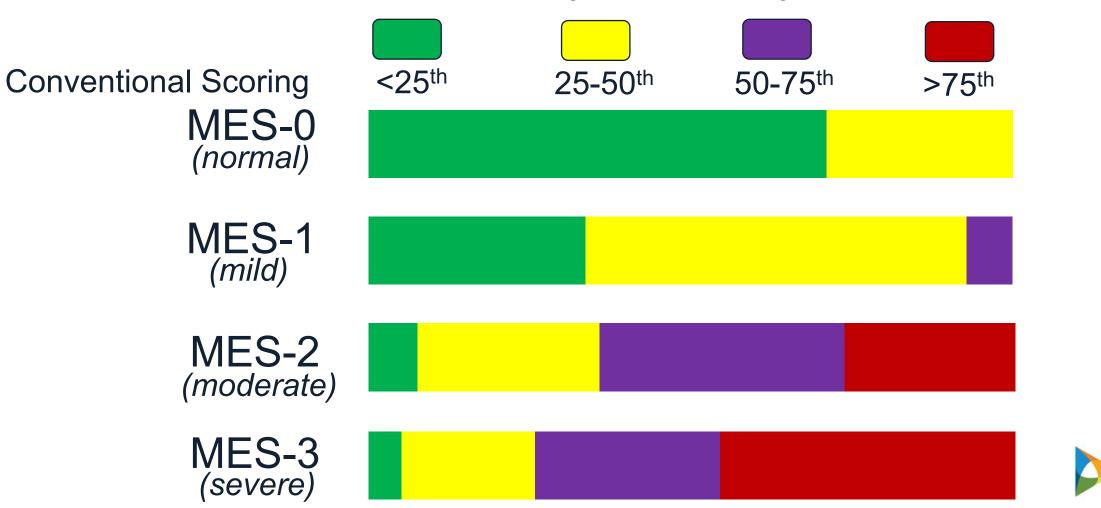


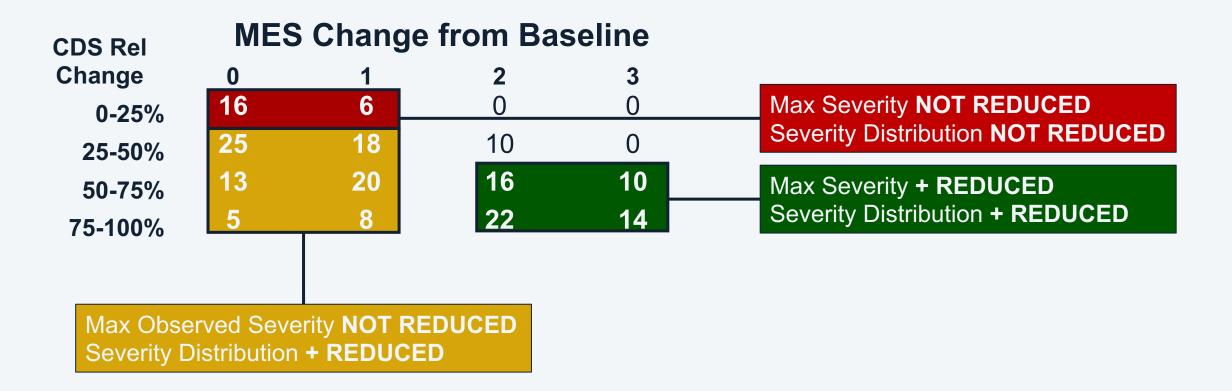
AI in Clinical Trials III: AI-Enhanced Disease Measurement


Human Scoring Instruments Require Simplicity for Practicality

Mayo Endoscopic Score (MES) for UC

Price of Simplicity Can Be Instruments that Lack Granularity


Progress in Al Analysis of IBD for Clinical Trials Computational Video Analysis to Address Current Scoring Limitations


Calculating the Cumulative Disease Severity (CDS) Showing Promise for More PRECISE Quantitation of IBD Activity

Al Scoring Highlights *Population Heterogeneity* Using Conventional FDA Approved Scoring

Colonoscopy CDS Severity Percentile

A Different Perspective on Endoscopic Response Al Scoring Better Captures Patients with Tissue Healing

AI WILL Redefine Our Concept of Quantifying Tissue Disease & Healing

Value Proposition for AI Disease Grading in Trials

REDUCED TRIAL SAMPLE SIZES

- Improved Disease Quantification Improves Power
- Trial Completed More Quickly, Less Patients Exposed

IMPROVED PATIENT SELECTION

- AI-Enhanced Scoring Helps Predict Responders Pre-Treatment
- Better Information from Pre-Clinical and Phase I & II Studies

BETTER MEASURES OF PARTIAL RESPONSE

- Overcome lack of conventional instrument granularity
- Until we have curative medications, need to consider partial response

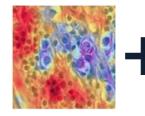
DREAMING.....AI GENERATED DISEASE MEASURES

- Forthcoming MOAs May Be Better Assessed With New Metrics
- AI Methods Will Inform New Measure Development

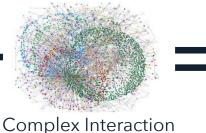
Barriers and Challenges

QUESTIONING ENDPOINTS

- Is linkage to clinical outcome needed ?
- Separate biologic vs. clinical outcome ?
- Plurality of good FDA Approved AI Endpoints ?


CAN WE HANDLE GRANULARITY ?

- Humans think with decision trees, not probabilities
- Need to establish score thresholds
- Move towards within-individual change vs. absolute?
- Will we end up simplifying/compressing AI granularity?


WHAT AI MEASURES CAN WE TRUST ?

- Abstract vs. Understandable
- Innovation vs. Experience
- Al Analysis Tracible to Conventional Understanding?

Max Data Extraction

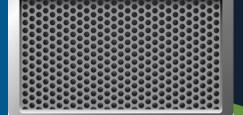
Networks

Mind Blown

Cuddle With It ? Or Eat it?

Stop or Go?

The Future State of Clinical Trials in Gl


	Automated Screening at Population-Level	Prediction of Higher Probability Responder	Automated Established Disease Scoring	Better Measures of Disease Activity
BENEFITS	 Faster Recruitment Underserved Access Quicker Trial Completion Phase 4 Monitoring 	 Targeted Enrollment Reduce Tx Failures Less Subjects Needed 	 Reduce Trials Costs Uniformity of Studies Small Pharma/Academia 	 Bespoke MOA Measures Trials Efficiency New Biologic Insights
	PrivacyMedico-LegalData Ownership	Labeling RestrictionsNarrow Use Window	 Plurality of Vendors +++ FDA Review Time 	 +++ New Measures ? Unique to MOA Trust/Explainability
	 Updated Consent Next Gen Data Storage Block-Chain of custody 	 FDA Approval Flexibility Payors Use RWE for expanded indications 	 Streamline Automated Scoring Approval Avoid Vendor Primacy 	 Encourage Exploration Burden of Traceability for Primary Endpoints

Thank You

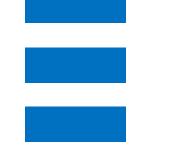
ryanstid@med.umich.edu

American Gastroenterological Association

Operational Needs of GI Clinical Trials

Al Solutions for Clinical Trials

Measure Standardization


Rapid Recruitment

Community Representation

Improved Subject Selection

Increased Power & Sample Size Reduction

Improved RWE for Approved Tx

