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Artificial intelligence (AI) has arrived and it will directly
impact how we assess, monitor, and manage inflammatory
bowel disease (IBD). Advances in the machine learning
methodologies that power AI have produced astounding
results for replicating expert judgment and predicting
clinical outcomes, particularly in the analysis of imaging.
This review will cover general concepts for AI in IBD, with
descriptions of common machine learning methods,
including decision trees and neural networks. Applications
of AI in IBD will cover recent achievements in endoscopic
image interpretation and scoring, new capabilities for
cross-sectional image analysis, natural language process-
ing for automated understanding of clinical text, and
progress in AI-powered clinical decision support tools. In
addition to detailing current evidence supporting the ca-
pabilities of AI for replicating expert clinical judgment,
speculative commentary on how AI may advance concepts
of disease activity assessment, care pathways, and patho-
physiologic mechanisms of IBD will be addressed.
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An Introduction to Artificial Intelligence
and Machine Learning
What is Artificial Intelligence?

Artificial intelligence (AI) is anticipated to transform
the practice of medicine and inflammatory bowel disease
(IBD) care by replicating the judgment of expert clinicians
and discovering impactful insights through analyzing vol-
umes of data too large and complex for humans to
perceive. The concept of intelligence is broad and in-
corporates different capabilities. Intelligence requires the
ability to acquire, store, and logically organize informa-
tion. Intelligence also includes the ability to characterize
information relationships with adjustment for situational
context. Most critically, intelligence can apply known
patterns and relationships between information and out-
comes to infer or predict future events. Together, these
facets of intelligence are the foundation for both clinical
decision making and the creativity needed to yield new
discoveries. Colloquially, AI refers to a synthetic or non-
biologic system that has some characteristics of intelli-
gence. However, the adjective artificial is increasingly
debated by computer scientists, neurologists, and philos-
ophers as AI capabilities rapidly expand. In IBD, AI sys-
tems are proving to replicate complex measurements and
judgments, showing promise for accurate and less biased
disease measurement, predicting future clinical outcomes,
and discovering new insights into the pathophysiology of
disease.

The emergence of AI in IBD was made possible by the
availability of high volumes of digitized medical data and the
computational methods needed for complex pattern recog-
nizing data analytics, collectively termed machine learning
(ML). Physicians learn to make medical decisions by
acquiring information, identifying patterns of information
and observed outcomes, and continually learning from
mistakes to improve their performance. In ML, input data
are provided with annotations, labels, or classifications and
can be clinical outcomes, expert measurements, or even
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Figure 1. Summary of AI and related applications in IBD. AI’s capabilities to mimic human understanding, judgment, and
prediction rely on the availability of electronically stored data and the analytic capabilities to determine the data patterns
associated with outcomes. Input data can be either structured or unstructured data types. Observations can be paired with
annotations to denote the outcomes associated with a set of data variables. ML methods determine the relationships between
sets of data and annotations to develop the best model for predicting an outcome (training). Model performance is calculated
using a portion of the annotated dataset unseen during model development (testing). Applications of AI include computer
vision for computational quantification and interpretation of an image, NLP for automated extraction of information from text,
and predictive modeling for clinical outcomes and new scientific discoveries.
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physiologic processes (Figure 1). ML methods quantify the
relationships between the input data and the outcome as a
model; this process is called training. During training, the
strengths and patterns of relationships are iteratively
modified to optimize the model parameters that best predict
the outcome or other output. Model accuracy, reproduc-
ibility, and other performance metrics for predicting the
outcome are tested on a new set of similar information.
Supervised learning is when the output or outcome is pro-
vided during modeling. In unsupervised learning, an output
or outcome is not provided, allowing data variables and
population subgroups to be clustered into similar groupings.
Unsupervised learning is commonly used for hypothesis
generation and insight discovery.

ML advances are also dramatically improving the types
of data that can be used in AI applications, specifically by
making unstructured data available for analysis. Struc-
tured data are organized and readily analyzed with ex-
amples including spreadsheet formatted data like
laboratory values, administrative claims, and biometric
data. However, unstructured data sources have no
inherent organization, despite being a repository for some
of the most invaluable clinical data used in decision
making, including medical imaging, endoscopic imaging,
and text in clinical documents. ML methods can quantify
and organize imaging and text as structured data better
suited for computational analysis. These ML advances,
specifically those allowing use of unstructured data, are
most responsible for the dramatic expansion of AI capa-
bilities in IBD and medicine at large.
Common Machine Learning Methodologies Used
for Inflammatory Bowel Disease

Many ML methods are available, although support vector
machines (SVMs), decision trees, and artificial neural net-
works (ANNs) are the most common ML used in IBD.1,2 An
SVM is an ML method for classification based on a set of
values where each feature (variable) is considered a
dimension of the dataset.1 SVM calculate the boundary (also
known as a plane) between all feature values to best split a
dataset by a classification of interest (Figure 2A). Consider a
fictitious example in which an investigator hypothesizes that
colectomy risk in ulcerative colitis (UC) can be predicted by
fecal calprotectin and length of colonic disease. Plotting
calprotectin levels and disease length, an SVM classifier
would identify the optimum boundary between the vari-
ables to best split the population studied by colectomy
status. SVM decision splits can be straight lines or complex
shapes that exist in hyperspace with n-dimensions. Criti-
cisms of SVM include difficult interpretability, especially
with nonlinear data, making implementation in clinical
practice difficult.

Another common ML classification method is the de-
cision tree, including a classification and regression tree
or random forest (RF) ensemble methods.3,4 Like SVM,
decision trees are a supervised learning method that is
used for a binary classification split. Consider an example
in which an investigator wishes to predict future bowel
resection with imaging and clinical variables in patients
with a small bowel stenosis from Crohn’s disease (CD).
Using classification and regression tree (CART) methods, a



Figure 2.ML techniques commonly used in AI for IBD. (A) SVMs are designed to identify the boundary within a dataset that
best separates 1 or more classes. In this example, 2 variables are plotted with the best boundary that optimally separates
classes, here surgery vs no surgery. High-dimensional (multiple variables) and nonlinear data may also be used to find a
classification boundary using SVM methods. (B) In RF methods, hundreds to thousands of decision trees are generated, and
only a subset of the whole dataset and variables are used to optimize each decision tree for an event. Each tree provides a
class prediction and the ensemble of trees vote to make a final prediction. Although individual trees in an RF are inferior to a
single optimized decision tree, the ensemble voting approach better accounts for missing data and feature randomness. (C)
ANNs can be used to analyze any type of data and perform particularly well for classifying imaging data. Image input layer
features quantifying brightness, hue, correlation, and spatial data are expressed as values in nodes. The input layers are
interconnected by several hidden layers. All nodes are weighted. When a weighted node value crosses an activation threshold,
the downstream connected nodes are activated, terminating in 1 or more output nodes and generating a probability for each
possible output. The essence of ANN training is the iterative adjustments to node weighting until the ANN prediction per-
formance is maximized.

April 2022 Artificial Intelligence in IBD 1495
single best decision tree is constructed using the best
cutoffs for each variable, positioning the most influential
variables higher in the tree. Alternatively, RFs are an
ensemble of many decision trees generated using only a
portion of the features and a subset of the data
(Figure 2B). Each tree provides a vote (or prediction) for
the classification; the greatest number of votes is used to
determine the final classification. The variation and di-
versity of features in RF outperform CART methods
because RF better accounts for randomness, missing data,
and error using the voting strategy. A key advantage of
decision tree methods is interpretability, as clinicians
often think in terms of decision splits.

ANNs are of particular importance in IBD, as their design
is well-suited for image analysis (Figure 2C). ANNs loosely
replicate biologic neural networks in the brain. For image
classification, ANNs are designed as layers of nodes
(neurons). In the setting of imaging ANNs, the input layer
contains image features, such as brightness, hue, saturation,
and homogeneity, as well as other unrecognizable de-
scriptors, used to quantify images. Each input node value is
then multiplied by a node weight. When the weighted input
value crosses a threshold, connected nodes in downstream
hidden layers are activated, similar to a synapse firing and
activating connected neurons. Interconnected hidden layers
ultimately terminate in an output node classifying the image
or other data. Using a training set of thousands of images
labeled with a classification of interest, an ANN learns by
iteratively adjusting the weighting (or strength of relation-
ship) between nodes to learn data characteristics associated
with the expert-provided image annotation. This powerful
model architecture is not restricted to images, but can also
be used with other high-dimensional types of data, such as
transcriptional, metabolomic, microbiome, or even clinical



Table 1.A Summary of Computer-Aided Characterization of Endoscopy for Ulcerative Colitis

First author Year Study design
No. of training

samples
No. of test
samples

Endoscopic
imaging type Outcome

Histology
prediction

Maeda17 2019 Retrospective Images from 87
patients

Images from 100
patients

Endocytoscopy
(ultramagnifying
endoscope)

Still images

Predicting histologic
remission (Geboes
score <3.1)

Yes

Ozawa8 2019 Retrospective Images from 841
patients

Images from 114
patients

Colonoscopy
Still images

Identifying MES 0 or
MES 0–1

No

Stidham9 2019 Retrospective Images from
2778 patients

Images from 304
patients

Videos from 30 patients

Colonoscopy
Still images

Identifying individual
MES grades of 0, 1,
2, and 3

No

Bossuyt18 2020 Prospective Images from 29
patients

Images from 10
patients

Prototype endoscope
Still images

Determining red density
score, which
correlated with
endoscopic and
histologic scores

Yes

Takenaka14 2020 Prospective Images from
2012 patients

Images from 875
patients

Standard colonoscopy
Still images

Determining UCEIS Yes

Gottlieb11 2021 Prospective Videos from
80% of 249
patients

Videos from 20% of
249 patients

Colonoscopy
Complete video

Determining whole
video MES and
UCEIS

No

Yao10 2021 Prospective Development set
of 80 videos

51 videos of high-
resolution sets; 264
videos from
multicenter clinical
trial sets

Colonoscopy
Complete video

Determining whole
video MES

No

UCEIS, Ulcerative Colitis Endoscopic Index of Severity; MES, Mayo Endoscopic Score.
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data types for finding feature patterns associated with an
outcome or event.
Using Artificial Intelligence for Analysis
of Disease Activity Found on Imaging
Artificial Intelligence in Inflammatory Bowel
Disease Endoscopy

Endoscopic impressions of IBD severity are the corner-
stone of objective assessments in IBD and a key metric of
therapeutic response.5,6 Established scoring systems, even
in the setting of central review, are limited by not only
interobserver variation but also the qualitative nature of
grading.7 ANNs are showing promise for automating the
interpretation of familiar endoscopic measures, particularity
in UC (Table 1). Proof-of-concept studies for AI in UC have
demonstrated the ability to replicate expert assessment of
still endoscopic images in UC. A computer-aided diagnosis
(CAD) system developed by Ozawa et al8 using still colo-
noscopy images demonstrated excellent performance for
distinguishing Mayo Endoscopic Score (MES) remission
(MES 0, 1) from active disease (MES 2, 3; area under the
receiver operating characteristic, 0.98). These results were
reproduced by another group who developed a neural
network MES model using more than 16,000 images from
approximately 3000 patients with UC, with an excellent area
under the receiver operating characteristic, sensitivity, and
specificity of 0.970, 0.83, and 0.96, respectively, for sepa-
rating endoscopic remission (MES 0, 1) from active disease
(MES 2, 3).9 In addition, agreement on the exact predicted
MES grade was indistinguishable from the agreement be-
tween paired experienced reviewers (k ¼ 0.84 vs k ¼ 0.86),
suggesting that automated systems performance is similar
to experts for classifying UC severity on still images. Of
course, still images are insufficient to provide a compre-
hensive impression of endoscopy, and methods are in
development for whole endoscopic video interpretation.
Challenges in analyzing entire endoscopic videos center
around confounders, including bowel preparation, blurry
images, biopsy-related injury, and other noise that must be
distinguished from portions of the video suitable for
grading. Using an array of sequential ANN classifiers, anal-
ysis of 315 complete endoscopic videos of both low- and
high-resolution predicted MES with an agreement of 68%
and 78%, respectively, compared with agreement of 82%
among central readers.10 Similar work was performed using
full-length endoscopic video from the phase 2 trial of mir-
ikizumab, where alternative methods had excellent agree-
ment with central reader MES (k ¼ 0.84) and Ulcerative
Colitis Endoscopic Index of Severity (k ¼ 0.86) scores.11

Machines are demonstrating acceptable performance for
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grading UC endoscopic severity and we should anticipate
inclusion of automated assessments in clinical trials in the
years to come.

Although replicating endoscopic measures in UC has
immediate utility, AI is helping expand the capabilities of
traditional endoscopy. Histologic activity, even in the setting
of endoscopic remission, is a predictor of clinical outcomes
in UC.12,13 AI may detect subtle visual features on endos-
copy, allowing histologic inference without biopsy. Taken-
aka et al14 used 40,758 colonoscopy images paired with
6885 histologic interpretations to predict histologic remis-
sion (Geboes score <3) using only endoscopic images, with
an accuracy of 93%.15 In a prospective follow-up study,
deep learning prediction of both endoscopic and histologic
(deep) remission was associated with a significant reduction
in hospitalization, colectomy, steroid use, and clinical
relapse (P < .001).16

AI technologies may also help realize the benefits of new
endoscopic visualization technologies designed to assist
real-time histologic assessment during endoscopy. Endocy-
toscopy is an emerging technology in which a 520-fold
ultramagnifying microscope is coupled with an endoscope,
allowing real-time histologic assessment of colonic mu-
cosa.17 Recognizing the increasing relevance of histologic
assessment for UC evaluation, Maeda et al17 developed a
CAD system to automatically provide real-time interpreta-
tion of endocytoscopy histologic activity in UC with a
sensitivity, specificity, and accuracy of 74%, 97%, and 91%,
respectively, using pathologist interpretation as a reference
standard. As real-time capabilities for endoscopic histologic
assessment become increasingly available, the AI technology
providing reliable image interpretation is likely to transform
our assessments of both disease activity and dysplasia
detection and decision making. Bossuyt et al18 are studying
the ability to measure UC endoscopic activity using a red
density score with a prototype endoscope designed to
quantify image pixel color metrics and vessel pattern
detection during colonoscopy.18 The red density score is
strongly correlated with the MES (r ¼ 0.76, P < .01), Ul-
cerative Colitis Endoscopic Index of Severity (r ¼ 0.74, P <
.01), and the Robarts Histological Index (r ¼ 0.74, P < .01).
The red density score provides an increased dynamic range
and may be found to be more objective and offer better
discrimination between grades of disease activity than
conventional endoscopic and histologic assessments alone.
Together, these examples highlight how AI will help make
sophisticated imaging technologies that are difficult to
interpret more practical and feasible for clinical care.

Expect automated endoscopic disease activity scoring to
soon be incorporated into therapeutic trials and eventually
clinical practice. AI automated review of endoscopic video,
either assisting expert reviewers or serving as a third digital
reviewer, would improve the speed, efficiency, reproduc-
ibility, standardization, and cost of objective mucosal heal-
ing assessments. With the recent introduction of the first US
Food and Drug Administration–approved endoscopic AI for
detecting colonic polyps, a regulatory path for evaluating AI
endoscopic technologies has been forged.19 In addition, ca-
pabilities for providing a more granular analysis of
endoscopic imaging is likely to produce new metrics of
disease activity, potentially outperforming established
measures like the MES, Ulcerative Colitis Endoscopic Index
of Severity, and Simple Endoscopic Score for Crohn Dis-
ease.20 AI endoscopic interpretation can aid remote tele-
medicine consultations, assist in education of trainees, and
help monitor endoscopic quality.21

Although AI will change endoscopy forever, there are
several barriers to overcome before implementing AI in
routine clinical care. Who will serve as the ground truth
reference for the endoscopic activity measures used to train
AI CAD systems? As academics, nonprofits, and commercial
enterprises aim to deploy AI systems for interpreting colo-
noscopy, attention to the characteristics, bias, and clinical
conditions in the model training sets will be needed. Finally,
AI systems will need to be explainable, producing evidence
of the rationale for automated score predictions, as black
box models will hinder trust and ultimately implementation.
Artificial Intelligence Applications in Capsule
Endoscopy and Histology

The morphologic and anatomic variation typical of CD
pose problems for current image analysis technologies using
AI, resulting in limited success replicating common endo-
scopic scores, such as Simple Endoscopic Score for Crohn
Disease and Crohn’s Disease Endoscopic Index of Severity.22

In contrast, current AI-based image classification is proving
useful for detecting small bowel ulcerations using video
capsule endoscopy (VCE).23,24 Klang et al25,26 have reported
ANNs trained on VCE images can detect small bowel ul-
cerations with accuracy approximating 95%, and also can
identify the presence of nonobstructive stenosis. Barash
et al27 developed an AI ulcer detection system capable of
identifying different severity grades of CD ulcerations.
Studying the potential clinical impact of using reliable AI
methods for ulcer detection, Ding et al28 found that auto-
mated methods reduced mean VCE review times from 96.6
minutes to 5.9 minutes with no difference in performance.
Although the heterogeneity of CD presents challenges that
will require further technologic developments, current
methods may still prove useful in easing the time burden
and improving sensitivity for reviewing VCE.

Similarly, automated quantitative description of histo-
logic activity, which has progressed in oncology applica-
tions, will likely be seen in IBD.29 Early work supporting the
AI histologic analysis for IBD included a study of 287 pe-
diatric patients with diagnostic accuracy of separating CD,
UC, and non-IBD individuals of 76.9%.30 In a study by Syed
and colleagues,31 a convolutional neural network was able
to assess sets of duodenal biopsies distinguishing celiac
disease, environmental enteropathy, and normal tissue with
93.4% accuracy. Interestingly, this neural network not only
classified the underlying intestinal disease type, but high-
lighted the regions of the histologic images that most
contributed to the diagnosis. Using a supervised neural
network trained on histologic features of intestinal inflam-
mation, Klein et al32 reported the ability to use baseline
intestinal biopsies to predict future phenotype, separating
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B1 and B2 disease in 5 years’ time with 70.5% accuracy.
Although histologic interpretations are challenged by
needing to account for variations in magnification level,
depth of field, and the 3-dimensional space of the tissue
assessed, AI-based histology for IBD will certainly progress.
In addition, methods developed in other fields may provide
new measures of histologic disease activity by reporting
spatial relationships, cellular quantitation, and macroscopic
architectural tissue features.33
Artificial Intelligence in Inflammatory Bowel
Disease Cross-Sectional Imaging

Analogous to advancements in endoscopy, ML analytics
are helping to improve IBD assessments using cross-
sectional imaging. Magnetic resonance enterography
(MRE) and computed tomography enterography (CTE)
protocols are an essential companion to endoscopy for the
diagnosis and longitudinal monitoring of CD disease
phenotype, complications, and disease activity.24,34 Cross-
sectional imaging is substantially additive to the informa-
tion collected by means of endoscopy.35,36 Imaging features
describing CD include continuous measures, such as bowel
wall thickening, luminal narrowing, bowel dilation, and
contrast enhancement, as well as qualitative features,
including the presence or absence of mural stratification,
mesenteric fat stranding, lymphadenopathy, and hyper-
vascularity.37,38 However, like endoscopy, variation between
reviewers can limit measurement usefulness. Some mea-
sures have good interobserver agreement, such as wall
thickness and edema in the terminal ileum, whereas other
assessments, such as agreement on the presence of stenosis
or penetration lesions, have proven to have higher vari-
ability, even when assessed by experienced radiologists.39,40

Joint society guidelines and the development of several
enterography disease scoring instruments have aimed to
standardize definitions and operationalize disease quantifi-
cation, with improvements over ad-hoc IBD activity
reporting.34,41,42 Yet, the variations among reviewer inter-
pretation of imaging, differences in the availability of IBD
expertise, and the time required to collect numerous mea-
sures highlight some of the key limitations in using cross-
sectional imaging to its fullest potential.

Advancements in ML bowel segmentation methodologies
for cross-sectional imaging over the last decade are pow-
ering both discrete disease activity measurements and
inference of expert judgments.43,44 Improvements in auto-
mated bowel segmentation are the key to automated
extraction of standardized, reproducible CD activity mea-
sures using enterographies. Using 23 MREs in pediatric
patients with CD, a neural network segmentation of the
lumen, bowel wall, and background agreed with manually
segmented bowel images in 75%, 81%, and 97% of cases,
respectively.45 Computer-assisted bowel wall thickness
measurement in 53 MREs demonstrated lower measure-
ment variance (0.46 mm2 vs 2.90 mm2; P < .001), greater
intraclass correlation (0.88 vs 0.45; P ¼ .005), and better
spatial overlap (0.89 vs 0.72; P < .0001) compared with
paired radiologists.46 In 138 CTEs assessed by paired IBD
radiologists, ML CTE analysis systems had measurement
accuracy for bowel wall thickness (P ¼ .857), maximum
bowel dilation (P ¼ .557), and minimum lumen diameter
(P ¼ .596) indistinguishable from radiologists.47 ML also
correctly inferred the presence of intestinal stenosis with
accuracy of 84.4% (area under the receiver operating
characteristic, 0.917) using anatomically extracted imaging
data. Reliable AI extraction of conventional CD findings will
aid in making objective, reproducible, and transparent
measurements on IBD imaging more feasible in practice and
research.

AI applications for enterography will also provide new
perspectives on disease measurement. Conventional scoring
of cross-sectional imaging typically evaluates disease fea-
tures at a segment level, assuming homogeneity of features
over the length of bowel. In a set of 207 CTE scans in pa-
tients with CD, a 3-dimensional neural network approach
demonstrated the ability to map CD disease distribution at a
resolution of 7.5 mm with an accuracy of 96.3%.48 Bowel
motility is an example of an imaging feature that confers
information on CD activity and phenotype, but it is chal-
lenging to measure reliably.49 Gollifer and colleagues50 re-
ported that AI-powered spatial (P ¼ .006) and temporal
(P ¼ .005) deformation characteristics could quantify CD
bowel motility properties, information that was correlated
with Harvey-Bradshaw clinical indices. Finally, AI is already
showing promise for making disease assessments that cli-
nicians and radiologists have difficulty of providing. In a
retrospective study of 167 patients with CD undergoing
surgical resection of the ileum, investigators used a deep
learning approach to extract more than 1400 individual
radiomic features from the bowel to attempt prediction of
the presence of moderate to severe intestinal fibrosis.51 The
radiomics model outperformed radiologists’ impression on
the presence of intestinal fibrosis after reviewing the same
CTE studies, with an accuracy of 0.754 vs 0.590. Although
radiomic models were imperfect, having a reported sensi-
tivity and specificity for intestinal fibrosis of 0.811 and
0.679, respectively, this demonstrates an example when ML
can use imaging to answer clinically relevant questions that
are not easily assessed by human experts.
Potential Impact of Automated Analysis of Cross-
Sectional Imaging on Inflammatory Bowel
Disease Management

In the near term, AI in IBD cross-sectional imaging will
likely be introduced as a new tool to help radiologists collect
quantitative measures of disease activity. Although human
verification and “sanity checks” of automatically generated
measures will be needed, AI-powered tools will make col-
lecting key IBD measures more feasible in clinical research
and practice. In addition, expect a few (but not many)
computer-generated imaging features that will prove clini-
cally relevant in the care of IBD. Should professionals whose
role centers on interpretating images begin preparing for a
new career? Definitely not; they should prepare to be busier
than ever. Information extraction from imaging and scoring
of disease activity is a small role of radiologists,



April 2022 Artificial Intelligence in IBD 1499
pathologists, and gastroenterologists. ML is excellent at
addressing specific questions and tasks, but lacks the flexi-
bility, experience, and creativity to ask the right questions to
provide comprehensive interpretations. The increase of in-
formation generated by AI imaging analysis will require
more clinical expertise and spur an increase in the utiliza-
tion of imaging.

Certainly more work is needed before IBD imaging
analysis is adequate for use in practice. Bowel segmentation
still requires significant correction due to difficulty negoti-
ating penetrating complications, atypical abdominal anat-
omy, and ostomies. In addition, ML data analysis of current
imaging will only take gastroenterology so far. Continued
advancement in core imaging technologies are still needed,
including improved ways to describe tissue, such as
magnetization transfer MR imaging and stiffness imaging
using bowel ultrasound.52,53 However, as the amount and
complexity of visual data increase, AI will be essential in
coordinating new imaging information. AI systems will
continue to improve, and the day when every CTE, MRE, and
perhaps ultrasound will be automatically and systematically
quantified for IBD activity is on the horizon.

Artificial Intelligence for Predicting
Therapeutic and Clinical Outcomes

ML analysis of readily available conventional informa-
tion sources, such as administrative claims data, diagnostic
and procedural codes, and laboratory values, has shown
promise for guiding decision making in IBD. ML methods,
well-suited for pattern recognition, have been applied to
predicting therapeutic response for a variety of IBD medi-
cations. Some of the earliest applications of AI included
longitudinal therapeutic drug monitoring of thiopurines.
Compared with traditional 6-TGN metabolite testing, ML
algorithms using routinely collected laboratory values had
superior performance predicting both clinical response
(area under the curve [AUC], 0.59 vs 0.86) and objective
biologic response (AUC 0.79 vs 0.49) among thiopurine
users.54,55 In addition, the thiopurine ML algorithm models
had excellent performance predicting thiopurine shunting
(AUC, 0.80) and medication noncompliance (AUC, 0.81). ML
algorithm predictions of objective biologic response also
conferred clinical benefits at 1 year, including reduction in
surgical procedures (–0.5 events per year), hospitalizations
(–1.5 events per year), and steroid prescriptions (–2.4
events per year). These prediction models were subse-
quently validated in the SONIC (Study of Biologic and
Immunomodulator Naïve Patients in Crohn’s Disease) clin-
ical trial dataset and have been deployed at the University of
Michigan as part of routine thiopurine monitoring.56

Similarly, ML methods have been used for prediction of
response to biologic therapies, although the incremental
benefits have not been dramatic. Using data from the
GEMINI 1 and 2 studies of vedolizumab for UC, Waljee
et al57 used ensemble ML methods to integrate patient de-
mographics, laboratory values, and vedolizumab drug levels
to predict clinical remission at week 52, with a sensitivity
and specificity of 0.76 and 0.71, respectively. The
vedolizumab-response prediction model correctly predicted
medication failure in 95.3% of patients using data from
week 6 and 88.0% of cases using pretreatment data alone.
RF ensemble methods were used to predict biologic
response to ustekinumab in CD using the UNITI-1 and 2
studies.58 Predictions of biologic remission at week 42 had a
sensitivity and specificity of 0.79 and 0.67 using week 8
post-treatment data, although baseline pretreatment data
had little predictive value (0.63 and 0.64, respectively).
However, despite using high-quality clinical trial data, ML
models offered minimal improvements compared with
simply using fecal calprotectin and C-reactive protein to
predict vedolizumab or ustekinumab response. ML sophis-
tication is no guarantee of clinical utility, as advanced model
architectures may be unable to overcome the limitations of
the data collected.

ML analytics are also offering opportunities to analyze
complex multi-omics data, identifying new IBD biomarkers
and helping incorporate genetic, transcriptional, and
microbiome data into clinical decisions. ML models using
RNA expression levels from whole blood samples identified
high- and low-risk profiles, which were strongly associated
with the need for future therapeutic escalation in both CD
(75% vs 35%) and UC (60% vs 20%).59 In the same study,
conventional high-risk clinical and endoscopic factors were
unable to separate those needing therapeutic escalation
over 18 months in CD (P ¼ .71) and UC (P ¼ .36). Studies
aiming to predict CD recurrence after surgery reported that
ML analysis of transcriptional data from resected ileal tissue
successfully predicted disease recurrence at 1 year.60 Acute
severe UC outcome prediction has been aided by using
neural networks to analyze expression data. Combining data
from a pool of 3391 microRNA candidates and 5 clinical risk
factors at admission for 47 patients with acute severe UC,
the developed ML model separated medical responders
from nonresponders with an accuracy of 97%; the
microRNA-only model was 94% accurate.61 ML is also
assisting in the analytics of population-level genome-wide
association studies (GWAS), proteomic and microbiome
complex interactions to improve our understanding of dis-
ease and aid in biomarker development.62–65
How Could Artificial Intelligence Impact Clinical
Decision Making in Real-World Inflammatory
Bowel Disease Management?

ML capabilities can provide improved accuracy and
additional insights into outcome prediction compared with
traditional statistics. Expect next-generation clinical pre-
diction models to incorporate automatically extracted im-
aging data, clinical, treatment, and laboratory data from
electronic medical records, as well as emerging transcrip-
tional, proteomic, and microbiome biomarkers. Modern ML
outcome prediction models will continually learn and adapt,
allowing iterative updates as new data become available.66

Self-learning models may benefit from pooled data at a
national level, but can also be customized to local data that
better captures regional practice patterns and outcomes for
improved prediction personalization. However, the clinical
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utility of predictive models remains to be seen.67 Expect
dozens, if not hundreds, of IBD models predicting treatment
outcomes, future relapse and disease progression. Inun-
dated with AI predictions, gastroenterologists will need to
increase our scrutiny of predictive model utility.68 Seem-
ingly impressive model performance statistics will need to
be replaced with better assessments of clinical utility, such
as decision curve analyses and other model net-benefit
metrics.69 The CONSORT-AI (Consolidated Standards of
Reporting Trials–Artificial Intelligence) position statement
provides excellent initial guidance on new considerations
for developing AI models and evaluating their clinical util-
ity.70 If we are headed toward a future of starting our day
with more automated electronic alerts and reminders from
prediction models, we should ensure the AI suggestions are
worth our precious attention.
Early Applications of Natural Language
Processing for Inflammatory Bowel
Diseases

Decision making in IBD will always be strongly influ-
enced by clinical features, symptoms, patient history, and
experiences that are not captured by genomics, endoscopy,
histology, or imaging. Natural language processing (NLP) is
a field of AI designed to understand human text and can be
used to automate collection of nuanced clinical data con-
tained within electronic medical records.71,72 NLP can help
fill the information gaps in studies relying on administrative
claims, diagnostic and procedure coding, and medication
order records to characterize patients.73 The development
of NLP for IBD is in its infancy. However, progress supports
expectations of a future state where patient-level pheno-
type, medication experience, and symptomatic course could
be summarized in succinct data tables for analysis
(Figure 3). Preliminary applications have highlighted NLP
detecting 12% more patients with IBD than administrative
diagnostic codes.76 In addition, NLP analysis of clinical notes
approximately doubled the detection of immunomodulator
and biologic use and increased the detection of fistulizing
(12% vs 36%) and stricturing (25% vs 40%) disease phe-
notypes in CD. NLP may be able to detect important IBD
features, complications, and symptoms that are not
routinely captured by administrative codes.

Beyond addressing the inconsistencies of administrative
codes, NLP may be able to detect important IBD features,
complications, and symptoms that are not coded routinely.
Using a dataset of more than 1800 clinical notes, a pilot NLP
pipeline was able to not only detect the mention of common
extra-intestinal manifestations in clinical documents, but
also could infer the degree of extra-intestinal manifestation
activity with an overall sensitivity and specificity of 92.9%
and 81.8%, respectively, compared with gastroenterologist
interpretation.77 In related work, another team used NLP to
identify arthritis by automated review of clinical narratives,
reporting a sensitivity and specificity of 0.83 and 0.92
compared with ICD-9 codes performance of 0.52 and 0.89,
respectively.78 NLP detection of arthritis eliminated the
need for a difficult and laborious chart review and was used
to show that vedolizumab users experienced arthralgia
more commonly than anti–tumor necrosis factor users
(46.1% vs 28.5%; P ¼ .002). Shedding light on the inac-
curacies of the information sources we rely upon for IBD
phenotype and history, NLP may dramatically improve our
ability to correctly describe IBD in individuals and
populations.

NLP methods are also helping automatically understand
patient-generated text. In a study of 1600 IBD-related so-
cial media posts, researchers using the ATLAS.ti NLP
software package were able to automatically determine the
theme and purpose of patient posts.79 Sentiments, evolving
concerns, and opinions of patients with IBD could be
ascertained in real-time using adapted NLP methods that
continuously analyze public social media posts. Re-
searchers at the University of California-Los Angeles
designed an NLP system with 95% accuracy classifying
whether the reason for an incoming patient message was
related to symptoms, medication problems, financial is-
sues, procedures, laboratory results, or scheduling of ap-
pointments.80 Real-time analysis of patient-generated text
could aid in triage of messages and potentially provide
suggested action or treatment. Considering these examples,
it is not difficult to imagine NLP-powered digital com-
panions assisting practitioners and patients in the man-
agement of IBD.
The Potential Impact of Natural Language
Processing in the Management of Inflammatory
Bowel Disease

NLP provides another example of using AI for complex
information extraction. NLP may be the most difficult AI tool
to develop, owing to the complexity of language, variation in
documentation style between authors, and the unstructured
nature of clinical narratives. Despite these limitations, the
preliminary explorations discussed highlight the potential
for NLP as a superior data source compared with adminis-
trative records for capturing disease history, medications,
and potentially symptoms in IBD.81 Expect advancements in
NLP to provide clean structured datasets describing patients
longitudinal IBD history. NLP can be performed passively as
a background data analysis process likely to be incorporated
into electronic medical record systems, potentially elimi-
nating the need for patients, medical staff, or caregivers to
complete surveys or long, structured questionnaires.82–84

NLP-derived information could be used to quickly evaluate
thousands of pages of outside records to determine history
and interventions, responses to treatments, common
symptoms, and to summarize prior investigations and
studies in a comprehensive data summary. Finally, NLP
interpretation of patient-generated narratives, either as e-
mails, portal messages, or even text transcribed from tele-
phone or video chats, could be used by chatbots and auto-
mated assistants for administrative tasks, such as
medication refills and scheduling of routine health mainte-
nance, and for interpreting symptoms and clinical disease
status.



Figure 3. NLP for extracting information from clinical text. Petabytes of text records, generated by health care providers and
patients, present an enormous longitudinal narrative of IBD. However, extracting clinical information from highly variable
natural speech is challenging. In NLP, documents undergo preprocessing to remove extraneous characters; partition docu-
ments into words, phrases, or sentences (tokenization); identify document sections; and detect parts of speech (verbs, nouns,
adjectives). Next, disease features, descriptions, and other modifiers are detected and converted into uniform concepts using
established concept libraries, including UMLS (Unified Medical Language System), MetaMap, and SNOMED-CT meta-
thesauruses.74,75 ML methods are used to associate concepts and infer meaning. The result is the conversion of an un-
structured narrative into a structured data table, allowing more rapid retrieval of information by clinicians, also powering AI
models for decision support systems.
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Conclusions
AI will impact nearly every aspect of IBD—how we

assess disease, make treatment decisions, discovery of new
biomarkers and medications, and even our communication
with patients. However, despite enthusiasm for an AI-
enhanced IBD practice, we must prepare for new re-
sponsibilities and challenges. All IBD providers will need to
become informed consumers of AI. IBD education must
remain ahead of the AI implementation curve. Education of
future IBD practitioners should include core competencies
for understanding ML, evaluating AI performance, and best
practices for quality assurance in using automated analysis
and prediction models.85,86 Education must also include
awareness and attention to potential demographic and
racial bias that can be introduced by AI.87–89 Ideally,
beginning today, IBD education will integrate applied pre-
dictive models, image analyses, and digital personalization
applications in tandem with traditional clinical experiences
to produce our first generation of caregivers assisted by AI.

Conversations regarding the yet uncharted medical-legal
landscape presented by AI should begin soon. Conflicts be-
tween AI and clinicians will definitely arise and a frame-
work of the responsibilities for caregivers and the AI
guarantors should be devised before implementation.90,91

Transparent discussions and practices regarding data pri-
vacy, ownership, and access privileges for research, private
companies, payors, and governments will be important
ethical considerations. Bundled with the promise of benefits
for IBD, these additional considerations must be addressed
for the most harmonious integration of AI into clinical
practice.

Although how AI will be integrated in clinical care re-
mains to be seen, the immediate influence of AI in IBD will
center around the collection, extraction, and organization of
clinical information (Figure 4). Expect with near certainty
that disease grading, particularly endoscopic, histologic, and
eventually cross-sectional imaging assessments, will be
replaced by instantaneous, standardized, and high-reliability
AI systems. Prepare to surrender IBD disease activity
assessment to the machines. Furthermore, NLP improve-
ments in document understanding will reduce the time
needed to find and organize a patient’s clinical information,
presently scattered across thousands of pages of electronic
documents. The art of the chart review may become a
welcome relic by the mid 21st century.

Will the physician become irrelevant? Although infor-
mation extraction will increasingly be in the purview of



Figure 4. Expectations of AI use in IBD clinical care. Near-term applications of AI into IBD care will most likely involve
standardization measurements with the benefits of automation. Conventional interpretation and more tedious disease activity
measures on endoscopy, cross-sectional imaging, and histology will be automatically extracted by customized ML methods
with more reproducibility, objectivity, and at high speed. Expect early applications to serve as a digital assistant, with mea-
surements verified by experienced clinicians but, in time, AI measurements will prove reliability without the need for human
review of results. Expanded disease quantification will power more granular and specific measures of disease activity and
potentially even new phenotypes for UC and CD. Finally, AI systems will power better clinical decision support systems,
integrating current and historical available data, including patient generated data, to assist in routine IBD management.
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machines, clinicians will continue to be the decision makers.
The IBD physician of the near future will cease collecting
information that will instead be provided by AI assistants,
liberating much needed time for more critical thinking, data
analysis, and education of our patients. Direct care delivery
by AI is likely decades away. AI will be challenged with
understanding routine nuances in IBD care, such as the
reasons why a patient hesitates to use immunosuppression,
why a colonoscopy may be needed outside of the standard
surveillance window, or when to continue treatment despite
a mild adverse effect. Even in the information extraction
domain, AI systems are likely to be incapable of collecting
the wide variety of emotional and psychosocial information
that physicians intuitively comprehend and use in
decision making. AI will need supervision for years to gain
our confidence, as it remains inexperienced, only knows
what it is trained, only can know the information it has
access to, and is currently inflexible to situation and clinical
context.

In the coming decade, the quality of clinical, physiologic,
and molecular disease descriptions enhanced by AI will
enable the next era of personalized medicine. Practitioners
will be able to quickly examine trends in disease activity,
symptoms, and outcomes at individual and population
levels. New AI-generated measures of clinical imaging could
prove superior to expert impressions of disease activity
impossible to be detected by the unaided human eye. Time
will tell whether AI-powered advances will improve the
utility of clinical decision support tools over current care
pathways. However, there is no question that AI will be
integrated into our clinical practice as an unbiased judge, an
assistant, and possibly as a surrogate. We are at the very
beginning of the digital revolution for IBD and we have
complete control of how AI is implemented in the 21st

century IBD care.
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